The N-terminal domain of tumor suppressor p53 is involved in the molecular interaction with the anti-apoptotic protein Bcl-Xl.

نویسندگان

  • Huibin Xu
  • Jeff Tai
  • Hong Ye
  • Cong Bao Kang
  • Ho Sup Yoon
چکیده

Emerging evidences suggest that transcription-independent mechanism of p53 appears to make an important contribution to the overall p53-dependent apoptosis. Recently, it has been postulated that the DNA-binding domain of p53 can interact with Bcl-Xl, and subsequently the proposed molecular interaction has been shown by NMR studies. Interestingly, Chipuk et al. [Cancer Cell 4 (2003) 371] reported that the N-terminal domain of p53 (p53NTD) alone is necessary and sufficient to induce transcription-independent apoptosis. To further define and understand the nature of the molecular recognition between p53 and Bcl-Xl, our current study focuses on p53NTD. We first demonstrated the molecular interaction between p53NTD and Bcl-Xl by co-expressing and purifying the complex. Second, to define the binding interface of the molecular interaction, which is not previously characterized, in the current we employed a NMR-based binding study, showing that the binding site on Bcl-Xl is located in the region including alpha4, the N- and C-termini of alpha3, the N-terminus of alpha5, and the central part of alpha2. To further probe this observation, we then performed fluorescence resonance energy transfer (FRET) assay in cells. The FRET efficiency detected between the donor and acceptor molecules appears to suggest the presence of molecular interaction of p53NTD with Bcl-Xl in cells. Taken together, our data suggest that p53NTD interacts with Bcl-Xl but the characteristic of the molecular interaction appears to be different from that of the DNA-binding domain of p53.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins

The molecular interaction between tumor suppressor p53 and the anti-apoptotic Bcl-2 family proteins plays an essential role in the transcription-independent apoptotic pathway of p53. In this study, we investigated the binding of p53 DNA-binding domain (p53DBD) with the anti-apoptotic Bcl-2 family proteins, Bcl-w, Mcl-1, and Bcl-2, using GST pull-down assay and NMR spectroscopy. The GST pull-dow...

متن کامل

bfl-1, a bcl-2 homologue, suppresses p53-induced apoptosis and exhibits potent cooperative transforming activity.

The bcl-2 family of genes code for proteins that contain anti-apoptotic or pro-apoptotic activity. The human bfl-1 gene contains an open reading frame for a 175-amino acid Bcl-2 family protein. Among the various Bcl-2 family members, the Bfl-1 protein shares the highest homology with the mouse A1 protein. These two proteins share three conserved domains, Bcl homology (BH)1, BH2, and BH3, with o...

متن کامل

Anti-apoptosis proteins Mcl-1 and Bcl-xL have different p53-binding profiles.

One of the transcription-independent mechanisms of the tumor suppressor p53 discovered in recent years involves physical interaction between p53 and proteins of the Bcl-2 family. In this paper, significant differences between the interaction of p53 with Mcl-1 and Bcl-xL were demonstrated by NMR spectroscopy and isothermal titration calorimetry. Bcl-xL was found to bind strongly to the p53 DNA-b...

متن کامل

p53 Protein Expression and Its Relation to the Apoptotic Index in Prostate Adenocarcinoma

Background: Prostate cancer is one of the most commonly diagnosed cancers in males. Tumor suppressor gene p53 plays an important role in causing cell cycle arrest and allowing apoptosis to proceed. Objective: To investigate the expression of p53 protein and its relation to apoptosis and prostate cancer traditional prognostic indicators. Methods: In this study expression of p53 was examined in p...

متن کامل

The Increased Level of Serum p53 in Hepatitis B-Associated Liver Cirrhosis

Background: The ability of tumour suppressor protein p53 (P53) to regulate cell cycle processes can be modulated by hepatitis B virus (HBV). While preliminary evidences indicates the involvement of protein-x of HBV (HBx) in altering p53 DNA binding, no further data have been accumulated for the significance of serum p53 in chronic hepatitis B virus infected patients. Methods: 72 non-cirrhotic a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 341 4  شماره 

صفحات  -

تاریخ انتشار 2006